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Table 1. Rate Constants for Decarboxylation and Retro-Aldol
Cleavage of Anilinium RadicalgpfX-CeHsNMeCHRE}

fragmentation rates

anilinium radical Ko (S )2 OF Kea

E X R solvent (M~1s1)be

a-Heterolytic fragmentation reactions of ion-radicals play a CO,NBu, H H MeCN 1.7+£0.2x 10°
major role in governing the chemoselectivities and efficiencies CONBus H H EtOH 2.5% 10°
of a wide variety of redox processes. The function of these CONBus H H  MeOH 2.8x 10°
reactions (egs 1 and 2) in SET-photochemistry is pivotal since COZNBS4 ,\CA%O S I\'\//Ilggm lei 83 X 183
departure of an electrofugal or nucleofugal group from a NBu: H Me MeGN 1 3% 10° x
respective cation or anion radical often occurs in competition conpy, H Ph  MeCN 2 6% 10°
with back electron transfer or alternative reaction modes. Asa cH,0H H H  60% MeOH-MeCN 4.1+ 0.6 x 10°
result, knowledge about the dynamics of ion radical fragmenta- CH,OH MeO H  60% MeOH-MeCN 2.0+ 0.3x 10*
tion reactions and their dependence on substrate structures andcH:OH Ck  H  60% MeOH-MeCN  3.1x 1C°
redox potentials as well as the medium and additives is crucial CH:O0H  H Me 60% MeOH-MeCN  3.3x 10¢
to the design of efficient SET-photochemical processes. CHOH H  Ph 60%MeOHMeCN  3.3+0.7x 10°

) a25°C. b 25°C with nBUNOAC as base.Errors were obtained by
R ~E : R ~Nu - R evaluating data from-35 independent experiments.
D-C-E — D-C 1) A-C-Nu —  A-C[ )
R

The importance of this information is evidenced by the
expanding number of investigations in which the rates of ion
radical reactions have been directly measudre@ur initial
efforte?" in this area focused on the-deprotonation reactions
of tertiary amine cation radicals and the relategilylamine
cation radical desilylation proce$sWe demonstrated that laser
flash irradiation of solutions containing 1,4-dicyanobenzene
(DCB) and N,N-dialkylanilines generates spectroscopically
detectable anilinium radicals which decay by (1) back electron
transfer with DCB~ at diffusion controlled rates, (2) base

To evaluate the dynamics of the aminium radical decarboxy-
lation and the related retro-aldol cleavage, we explored the SET-
photochemistry of precursors of these transients in order to
ensure that the respective fragmentation reaction pathways were
followed cleanly in these systems. Preparative irradiation (Pyrex
(4 > 300 nm N, MeCN) of the anilinocarboxylaté (2.5 mM)
and DCB (2.5 mM) leads to clean production of a mixture the
diamine3 (30%), adduc# (27%), and recovered DCB (55%)
(Scheme 1). Likewise, addudt (32%) and recovered DCB
(63%) are produced when an MeCN solution containing the
anilino alcohol2 (2.4 mM), DCB (2.4 mM) and tetra-
butylammonium acetate (TBAA) (0.3 M) is irradiated (Scheme

inducedo-deprotonation with second order rate constants that 1) “The results demonstrate themino radical formation by

are dependent on base strength and the natuse ahd arene
ring-substituents, or (3) silophile induceddesilylation. Re-
cently, we initiated a more broad study of aminium radical
a-heterolytic fragmentation reactions in order to determine if
the trends noted earlier are general. Our plan was to determin
the rates of the knowhbut relatively unstudiedunimolecular
decarboxylation reactions af-amino carboxylates (eq 3), to

decarboxylation and retro-aldol cleavage is dominant for anilino

carboxylate and anilino alcohol cation radical decay.
Time-resolved laser spectroscopy was used to determine the

dynamics of these-fragmentation reactions. Laser excitation

&308 nm, 6 ns, 5660 mJ) of solutions containing (Table 1)

tetran-butylammonium anilino carboxylates (ANC, 0.5 mM)
and DCB (50 mM) in each case leads to initial generation

compare these rates to the bimolecular rates of the related(Figure 1) of a 1:1 (know# molar absorptivities) of two

deprotonatiori! desilylation?" and retro-aldol fragmentation (eq
3),>2band, finally, to ascertain if substituent effects on the rates
of these aminium radical fragmentation can be generalized.
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E=CO, M*;Y=CO,+M"
E =CH,OH +B’; Y = B-H + H,C=0
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transients characterized as DCB(340(s), 430(w) nm) and
ANC** (ca 460 nm)2"6 Analysis of the decay profiles for
ANC** employed a kinetic treatment which takes into account
competitive diffusion controlle? SET between ANE and
DCB*~ and unimolecular decarboxylation of ANC This
analysis when combined with the knofimolar absorptivities

of the transients yields the unimolecular rate constakis) (
for ANC** decarboxylation. Decarboxylation rates were mea-
sured for a series ring- ard substituted systems and in aprotic
and protic solvents (Table 1). In addition, counter cation effects
on the rates of AN€ decarboxylation were evaluated. Rep-
resentative data for the metal cation type dependendgepf
are given in Table 2.
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0.24 (Mg™?, Ca"?) decrease ilkge, Thus, tight-coordination of the
carboxylate moiety to cations, brought about by the use of less

Ao_o.k.“‘_‘ polar/protic solvents or more oxophilic metals, slows ANC
0.164 i decarboxylation.

° fmews b Finally, substituents influence the rates afheterolytic
fragmentation reaction of anilium radicals. In earlier effdlts,
we showed that the rate of TBAA-induceddeprotonation of
[p-X-CeHiNMey]** is a sensitive function of the para-substituent
(kKgeprot x 107° = 2.0 (X = H), 0.8 (X = MeO), and 8.9 (X=
| CRs)). The data in Table 1 demonstrate that this trend holds
600 for decarboxylation and retro-aldol cleavage. Linear free energy
treatments of the rate data giggeprot= 1.5, pdec= 1.8, andora
= 1.6 which suggest that anilium radical deprotonation, decar-
X ; g . : boxylation, and retro-aldol cleavageeactions occuria early
f(ilpzﬁlr;.))Transmnt absorption at 460 nm, experimental data (points) andtra_n_sition states W_hich have _similar electronic character in the
’ anilino-moiety region. As discussed earlféf? the rates of
Table 2. Salt Effects on [PhMeCKCONBu,]*+ Decarboxylations ani:jinium rzdiﬁal deirotonationb parallel tr|1eir tlhergnodyna[nic
- . acidities which are known to be inversely related to aniline
added saft ke x 10°(s ™) added salt ke x 10°(s ) oxidation potentials. Thus, the current results show that this
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Figure 1. Transient absorption spectra following<40 us) 308 mM
excitation of PhNMeCHCO,NBus and DCB in MeCN at 25°C.

none 1.7 RbCI® 2.8 relationship (increasing rate with increasing precursor oxidation
LiCIO4 11 CsCIQ 2.9 potential) also exists for amine cation radical decarboxylation
NaClQ, 1.9 Mg(CIQy), 0.12

and retro-aldol cleavage reactiots.

KCIO. 2:5 Ca(ClQ) 0.08 Equally interesting is the observation that the amine cation
225°C, MeCN with [PhNMeCHCO,NBu,] = 0.5 mM and [MCIQ] radical a-heterolytic fragmentation processes show the same
=10 mM. a-substituent dependence. Accordingly, replacement of one of

the a-hydrogens in [GHsN(Me)CHE]** by methyl causes a

By use of similar methods, the rates of TBAA promoted retro- decrease in the rate of loss of the electrofugal group, while a
aldol fragmentation k) of photogenerated cation radicals rate increase is engendered by phenyl substitdfiorthe
derived from the anilinoalcohols (ANA) (Table 1) were rationale presented earlier by Lewis and his co-woiédie
measured. Plots of the observed rates of ANdecay (treated o-substituent effects on aminium radical deprotonations, based
as two competitive bimolecular decay routes TBAA upon both stereoelectronic and-€ bond dissociation energy
concentration (0.£0.5 M) provide k; values for cleavage. effects, appear to be generally applicable to othéieterolytic
Additional data supporting the proposal that TBAA induced fragmentation process&sl4
retro-aldol fragmentation is the major, if not exclusive, pathway  In summary, results presented here demonstrate that aminium

for decay of ANA™ are an OH/OD isotope effect of Z.2nd radicals generated from-aminocarboxylate undergo fast de-

an NCH/NCD; isotope effect of 1.3 for PhN(CHCH,CH- carboxylation to produce-amino radicals and that the decar-

OHZ boxylation rates as well as those for related deprotonation,
A number of interesting features of anilinium radicafrag- desilylation, and retro-aldol cleavage can be significantly altered

mentation reactions can be gleaned by inspection of the by changes in solvent, counter cation, and N- arsubstitu-
accumulated data. Firstly, ANCdecarboxylations are among  ents!®

the most rapid of amine cation radical fragmentation procésses.
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cation effects (Table 2). Metal perchlorate salts appear t0 ' (14) (a) Theo-substituent effects argue against a two-step mechanism
influence the decarboxylation rates in two ways. Addition of for conversion of anilium carboxylates teamino radicals, involving rate

_ il ; = limiting SET to generater-amino-carboxy radicals followed by fast (ref
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Cs' leads to an increase in the decarboxylation rates, a likely 1986 108 7419: Bockman, T. M. Hubig, S. M.; Kochi, J. K. Am. Chem.
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